the civil engineering
Premium

Buckling Load Numerical | Introduction | Important Formulas

 

In this article, we will discuss buckling load numerical.

 

  1. Introduction  

The maximum limiting load at which the column tends to have lateral displacement / tends to buckle is called Buckling Load. It is also known as Crippling Load.

The buckling takes place about the axis having a minimum radius of gyration or least moment of inertia.

Pcr = ( πEI ) / L2

It is Euler’s formula for buckling load.

 

End Condition Effective length Euler’s Buckling
Both ends pinned / hinged Le = L Pcr = πEI / Le2,Pcr = πEI / L2 
One end Fixed, other and free Le = 2 L Pcr = πEI / Le2,Pcr = πEI / 4L2 
One end fixed, other end hinged / pinned Le = L / √2 Pcr = πEI / Le2,Pcr = 2πEI / L2
Both ends fixed Le = L / 2 Pcr = πEI /Le2,Pcr = 4πEI / L2

 


 

  2. Important Formulas  

 

1. Pcr = ( πEI ) / Le2

 

2. Critical Load = 2 x actual load

 

3. Moment of Inertia (I) = π ( D4 – d4 ) / 64

 

4. Safe Load = Buckling load / Factor of Safety (FOS)

 

5. E = FL / A Δl

Δl= Elongated length

 

6. Slenderness ratio (λ) = l / Rmin 

Rmin = Radius of gyration

 


 

  3. Buckling Load Numerical  

 

1. A solid round bar 60 mm in diameter and 2.5 m long is used as a strut, one end of the strut is fixed while its other end is hinged. Find the safe compressive load for this strut using Euler’s formula. Assume E= 200 GN/mand factor of safety 3.

Given,

d = 60 mm = 0.06 m

l = 2.5m

E= 200 GN/m= 200 x 10N/m2

FOS = 3

 

Le = L / √2 = 2.5 / √2 = 1.77 m 

we have,

Buckling Load (Pcr) = πEI / Le2

= π200 x 109  π ( 0.064) / 64 x 1.772

= 400.8 KN

 

Safe Compressive load = Buckling load / Factor of safety

= 400.8 / 3

= 133.6 KN

 

2. A slender pin-connected aluminum column 1.8m length of the circular cross-section is to have an outside diameter of 50 mm. Calculate the necessary internal diameter to prevent failure by buckling if the actual load is applied is 13.6 KN and the critical load applied is twice the actual load. Take E for aluminum as 70 GN/m2.

Given,

L = 1.8 m

Outside diameter (D) = 50 mm

Internal diameter (d) = ?

E = 70 GN/m2

= 70 x 109 N/m2

Actual load applied (P) = 13.6 KN

 

Critical load = 2 x actual load

= 2 x 13.6

= 27.2 KN

 

Moment of inertia (I) = π ( D4 – d4 ) / 64

= π ( 0.054 – d4 ) / 64

 

End condition: both ends pinned

Effective length (Le) = L = 1.8 m

 

Buckling Load (Pcr) = πEI / Le2

27.2 x 10= π70 x 109 x π ( 0.054 – d4 ) / 64 x 1.82

= 564019.2 = 13565246.05 – 2.17 x 1012d4

d4 = 13001226.85/ 2.17 x 1012

d = 0.049m

 

3. An I section joist 400 mm x 200 mm and 6 m long is used as a strut with both ends fixed. What is Euler’s crippling load for columns? Take Young’s modulus of joist as 200 Gpa.

All dimensions are in mm.

Given,

 

Buckling Load Numericals

 

x̄ = 100 mm

ȳ = 200 mm

x₁ = 100 mm           x₂ = 100 mm

y₁ = 10 mm             y₂ = 200 mm

x₃ = 100 mm           y₃ = 390 mm

 

Buckling Load (Pcr) = πEI / Le2

Here, I is Minimum of Iₓₓ and Iᵧᵧ

 

Iₓₓ = ( Iₓₓ )₁ + ( Iₓₓ )₂ + ( Iₓₓ )₃

= [ 200x 203 / 12 + 4000 (10-200)] + [ 200x 3603 / 12 + 1200 (200-200)] + [ 200x 203 / 12 + 4000 (390-200)]

= 366826666.7 mm4

 

Iᵧᵧ = ( Iᵧᵧ )₁ + ( Iᵧᵧ )₂ + ( Iᵧᵧ )₃

= [ 20x 2003 / 12 + 4000 (100-100)] + [ 360 x 203 / 12 + 0 ] + [ 20x 2003 / 12 + 0 ]

= 26906666.67 mm4

 

Iᵧᵧ < Iₓₓ so, I = 26906666.67 mm4

 

Buckling Load (Pcr) = πEI / Le2

= π200 x 109 x 26906666.67  / 32

= 5901.289 KN

 

4. A hollow tube 4 m long with external & internal diameter 40 mm & 25 mm respectively was found to extend 4.8 mm under a tensile load of 60 KN. Find the buckling load for the tune with both ends pinned. Also, Find the safe load on the tube taking FOS as 5.

Given,

L= 4m

D= 40 mm

d= 25 mm

FOS = 5

Δl = 4.8 mm

Buckling load = ?

 

Both ends are pinned so, Le= L =4m

Buckling Load (Pcr) = πEI / Le2      …………(i)

 

Moment of Inertia (I) = π ( D4 – d4 ) / 64 

= π ( 0.044 – 0.0254 ) / 64

= 1.6 x 10-7 mm4

 

E = FL/ AΔl 

= ( 60 x 10x 4 x 4 ) / (0.042 – 0.0252 ) x 4.8 x 10-3

= 6.53 x 1010 N/m2

 

From eqn (i),

Pcr = π6.53 x1010 x 1.6 x 10-7 / 4

=4270 N

 

Safe load = Buckling load / FOS

= 4270/5

Safe load = 854 N

 

5. Determine the ratio of buckling strength of 2 columns of circular cross-section one hollow and other solid when both are made of the same material, have the same length, same cross-sectional area, and same end conditions. The internal diameter of the hollow column is half of its external diameter.

Given,

Hollow Solid
Eᴴ E
lᴴ l
Aᴴ A

 

dᴴ = Dᴴ / 2

Buckling Load (Pcr)ᴴ = πEᴴ Iᴴ / Le2       ………….(i)

 

Buckling Load (Pcr) = πE I / Le2         …………(ii)

 

(Pcr)ᴴ (Pcr) = Iᴴ / I

= ( D4 – d4 )  / D4

= 0.938 D/ D…………..(iii)

 

Since the cross-sectional area is the same of both columns,

A = A

π D2 / 4 =  π D2 / 4

D/ D= 1.333

Dᴴ / D = 1.1547

 

from (iii), we get

(Pcr)ᴴ / (Pcr) = 0.938 (1.1547)4

(Pcr)ᴴ / (Pcr) = 1.66

 

Read More: Bulkage of sand

 

Read More: Plinth beam

 


 

The Civil Engineering
Latest Articles
Related Articles